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IMPLICATIONS OF PROPERTIES CONCERNING
COMPLEMENTATION IN FINITE LATTICES

FRITHJOF DAU

ABSTRACT. In Lattice Theory one considers lattices with different types of
complementating operations, like complemented lattices, ortho-lattices or
orthomodular lattices. These types can be defined by elementary properties
of unary mappings (like being antitone or fulfilling de-Morgan-laws). In
this work, twelve simple attributes which suffice to define the most impor-
tant notions of complementations are investigated. A complete list of valid
implications between them is presented, as well as a list of counterexamples
for implications which are not valid.

1. MOTIVATION

In [DW] it turned out that for a better modal understanding of triadic
contexts, the class of finite lattices with an involutorial semi-complementation
should be investigated. In Lattice Theory there are many different notions of
lattices with unary complementations, like ” complemented lattices” or ”ortho-
lattices”, and in this work we want to examine how involutorial semi-comple-
mentations are related to other kinds of complementations. This is done as
follows: The most common notions concerning complemented lattices are bro-
ken up into simpler properties such that the different notions of being com-
plemented can be composed with these properties. Between these properties,
a sufficient list of valid implications between them is presented, that means
every valid implication is a logical consequence of this list. On the other
hand, a complete list of counterexamples for implications which are not valid
is presented, too (with "implication” we denote formulas of first order pred-
icate calculus of the form ¢; A ... A ¢, = ¢p41). In particular, we get all
dependencies between involutorial semi-complementations and other notions
of complementations.

2. PROPERTIES

Let L = (L,A,V,0,1,1) be a finite lattice with a unary operation -. The
following properties shall be investigated:



2 FRITHJOF DAU

1. L is modular

2. L is distributive

3.zt =0=z=1

4. 2t =1=1=0

5. V' =1 (main property for a V-semi-complement)

6. Az =0 (main property for a A-semi-complement)

7.2 <y=xV(z" Ay) =y (main property for orthomodularity)
8

.y <z=xA(z"Vy) =y (main property for dual orthomodularity)
9. x1+ =z (+ is involutorial)
10. 2 <y = y*+ <2t (+ is antitone)
11. (zVy)t =2t Ayt (V-de-Morgan)
12. (z Ay)t =2t vyt (A-de-Morgan)

With these properties, the following classic definitions can be performed:
k-

xt is a A-semi-complement of z, when 3) and 6) hold.

is a V-semi-complement of z, when 4) and 5) hold.

zt is a (full) complement of z, when 5) and 6) hold.

=W o=

L is an ortholattice, when * is a full complementation which fulfills 9)

and 10). If 1) additionally holds, L is called modular ortholattice.

5. L is an orthomodular lattice, when L is an ortholattice and - addition-
ally fulfills 7).

6. L is a boolean lattice, when L is distributive and * is a full complemen-

tation.

3. EXAMPLES AND CONTEXT

In figures 1-6, the Hasse-diagrams of all lattices L := (L, A,V,0,1,1) we
need are listed.

In the first examples, the operation * is indicated by dotted lines having
arrows at their ends. A double arrow between two elements x and y is to be
read as - =y and y" = z.

In the further examples the elements of the lattice are labelled, and the
operation * is given by a table. Again, a double arrow between two elements
z and y is to be read as £+ =y and y- = .

Which of the properties apply to which examples is encoded in the following
formal context. Note that the dual of a lattice is denoted by the number of the
lattice followed by a ”d” (dual means that the order on the lattice is reversed,
but the operation * is not changed).

In figure 8 one can see a nested diagram of the concept lattice of the context
in figure 7. The lattice is derived by using Formal Concept Analysis (see
[GW]). The elements of the lattice are the black filled points in the diagram.
The diagram can be seen as the product of an inner and an outer Hasse-
diagram, and one point lies below another iff this is the case in the inner
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FIGURE 2. examples 5 to 8

FIGURE 3. examples 9 to 11

diagram and in the outer diagram (for the enclosing big circles). For example,
the element which is labelled with ”03” lies below the element which is labelled
with 701”7, but not below the element which is labelled with ”702”.

Further information on nested diagrams can be found in [GW].

4. A BASIS FOR THE IMPLICATIONS

The following propositions yield a basis for all implications which hold in
the formal context, e.g. in the set of all examples. This has been verified
by using the program CONIMP of Peter Burmeister (see [Bu]). This program
relies on a method of Formal Concept Analysis (see [GW]), namely the at-
tribute exploration. CONIMP gives for a given formal context a basis (the



4 FRITHJOF DAU

Duquenne-Guiges-Basis) for all implications which are valid in the context.
The implications listed in this section are the Duquenne-Guiges-Basis for the
context given in figure 7.

Because these implications are all provable for finite lattices, any implica-
tion which holds in all examples holds in any finite lattice, or, vice versa: Any
implication which does not hold in every finite lattice has a counterexamples
among the examples listed here.

7 0=>7 7 0=>7 7 0>7
1= 2 1=2 1=7
4 6 2>1 4 6 2=>1 4 6 2>7
3>6 3= 4 3.=7
1 3 4=05 3 4= 3 1 3 4=17
5= 4 5= 2 5> 4
0 6> 3 0 6> 1 0 6-> 4
7=>0 7-=0 7> 4
FIGURE 4. examples 13 to 15

0=9

1=28

2.=>7

9 3> 8

O<->9 4.> 2

6 l<>7 5. 8

4 }" g 2= =6 6> 7

3<->5 7.> 2

4<.>8 8.~ 7

0 9= 0

FIGURE 5. examples 16 to 17

0= =11

=11 l1==>8

2<->6

=9
3<->5
=10

=8 4....> 5

-7 7> 2

10> 1

FIGURE 6. examples 18 to 19
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FIGURE 7. The context

Most of the propositions are trivial or well known, but they are listed for
sake of completeness. Nevertheless, at least the last three theorems are non-
trivial.

Of course, for every proposition the dual proposition holds, too. If a propo-
sition is not selfdual, both forms are listed as formal implications using the
numbers of the properties. But, for sake of clarity, only one form is written in
terms and proven afterwards.

Proposition 1. 2) =—=1)



6 FRITHJOF DAU

function-properties of finite lattices
complement-properties of fnite latiices

inf-de-Morgan

FIGURE 8. The concept lattice

If L is distributive, then L is modular.

Proposition 2. 5) =3) and dually 6) =)
If the main property of a V-semi-complement holds, then x # 1 = z+ # 0.

Proof. Let z # 1. From z V 2" = 1 we conclude z # 0. q.e.d.

Proposition 3. 7) =5) and dually 8) =>6).
If the main property of orthomodularity holds, then the main property of a
V-semi-complement holds.

7
Proof.5E§1:>5E\/3:l:3:\/(3:l/\1):)1 q.e.d.
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Proposition 4. 11) =>10) and dually, 12) =>10)
If V-de-Morgan holds, then * is antitone.

Proof. Let £ <y. We conclude y* = (z Vo)t =zt Ay, soyt <zt qed.

Proposition 5. 1), 5) =7) and dually 1), 6) =8)
If L is modular and - fulfills the main property of a V-semi-complement,
then the main property of orthomodularity holds.

~

)

1 5
Proof. Let < y. We conclude z V (z' Ay) Z (zVazl) Ay 2y ANy =1y q.ed.

Proposition 6. 9), 3) =4) and dually 9), }) =>3)
If - is an involutorial operation which fulfills  #1 =z # 0, then it ful-
fills x # 0=z~ # 1, too.

Proof. From 0 = 04+ = (04)! and z # 1 = 2 # 0 we conclude 0+ = 1,
hence 1+ = 0. Because © is bijective, we gain = # 0 = = # 1. q.e.d.

Proposition 7. 9), 10) =-11), 12), 3), 4)
If L is an antitone involution, then both de-Morgan-laws, x # 1 =z~ # 0
and z # 0=z # 1 hold.

Proof. An antitone involution is an anti-automorphism. In particular, both
de-Morgan-laws hold, and we gain 1 = 0 as well as 0 = 1. Because * is
bijective, we conclude z # 1 = 2+ #0and z #0 = - # 1. q.e.d.

Proposition 8. /), 5), 10) =6) and dually 3), 6), 10) =>5)

If - is antitone and fulfills x # 0 = x= # 1 and the main property of a \/-
semi-complement, then it fulfills the main property of a A-semi-complement,
too.

Proof. Because * is antitone, from z A z- < z and £ A 2+ < = we conclude

(z Azt)t >zt and (z A2t)t > 2t So we gain (z Azt)t > 2t vttt
Because of the main property of a V-semi-complement we infer z- Vv -+ =1,
hence (z Az)t = 1. Due to z # 0 = z # 1 we ensure (z Az) =0. q.e.d.

It is well known that the finite, distributive and complemented lattices
are, up to isomophism, exactly the finite powersets with the set-theoretical
complement. In particular we gain

Proposition 9. 2), 5), 6) =1), 3), 4), 7), 8), 9), 11), 12).
If L is distributive and if - is a full complementation, then all remaining
properties hold.

Proposition 10. 2), 5), 11) =2)
If L is distributive, if ~ fulfills the main property of a \V-semi-complement
and if the V-de-Morgan-law holds, then the A-de-Morgan-law holds, too.
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Proof. First, the A-de-Morgan-law shall be shown for V-irreducible elements.
Solet a,b € L be V-irreducible. If ¢ and b are comparable, we gain immediately
(a Ab)t = at Vbt because * is antitone. So let a and b be incomparable. Tt
holds a = aA(bVDb) = (aAb)V (aAb'). Because a and b are incomparable, we
gain aAb < a and, because a is V-irreducible, a = aAb"', hence a < b. We gain
even at Vbt > atVa = 1,50 at Vbt = 1. On the other hand (aAb)* > at Vbt
holds because * is antitone, and so we conclude (a A b)* = at Vbt = 1.
Therefore the A-de-Morgan-law is proven for V-irreducible elements.

Now let z,y be arbitrary elements of L. Then z and y can be written as z =

Vizl,...,m a; and y = ijl,...,n b; with V-irreducible elements a;, i = 1,... ,m
and bj, j =1,... ,n. Now we compute
s.a. L
@Ayt 2 () a)A (b))
i=1,...,m j=1,..,n
2) L
= (V (anby)
i

_.
=
— = E
&
>
Q@‘
SN—
}_

wm
1FS
=
S
<
=

12
>
Q
£
<
;>
ol

i=1,...,m 7j=1,..,n

11)

= 'V a)veV o
i=1,...,m j=1,....,n

S.a

< xl \V; yl q.e.d.
Before proving the next theorem, the following lemma has to be shown:

Lemma 1. If - fulfills the main properties of orthomodularity and of a A-
semi-complement and if one de-Morgan-law holds, then * is bijective. The
dual holds, too.

Proof. Suppose there are elements x, y with z # y and 2z = y*. The proof
is first done using the V-de-Morgan-law. We distinguish the following cases:

1. Let x and y be comparable. W.l.o.g. let x < y. We conclude

7)

6
yZ2av @t Ay 2oyt ay) 2

=zV0==z
2. Let £ and y be incomparable. Define z = x V y. It follows z > z and

11
2t =(zVvy)t ) et Ayt 2 gt A gt =2t

So the second case can be reduced to the first one.
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In the case of the A-de-Morgan-law instead of the V-de-Morgan-law, simply
define z = z Ay (instead of z = zVy). The remaining arguments are analogous
to the V-de-Morgan-case. q.e.d.

Now the next theorem can be stated:

Proposition 11. 7), 6), 11) =8), 12) and dually 8), 5), 12) =17), 11).
7), 6), 12) =>8), 11) and dually 8), 5), 11) =17), 12)
If - fulfills the main property of orthomodularity and a NA-semi-complement
and if one de-Morgan-law holds, then the other de-Morgan-law and the main
property of dual orthomodularity hold, too.

Proof. Due to theorem 4, - is antitone, and due to lemma 1, - is bijective.
A bijective and antitone self-mapping ¢ of a finite lattice is an anti-automor-
phism. If an anti-automorphism ¢ is additionally compatible with = (that
means ¢(z ') = ¢(z)"), both de-Morgan-laws hold, and with every proposition
the dual proposition holds, too. For taking ¢ as *, this presupposition trivially
holds, so we gain immediately the conclusions of the stated theorem. q.e.d.

In proposition 11, we can additionally conclude from the given semi-comple-
ment-property to the dual semi-complement-property, too. This follows at
once from theorem 3.

Proposition 12. 7), 9) =8) and dually 8), 9) =7)
If + is involutorial and fulfills the main property of orthomodularity, then
it fulfills the main property of dual orthomodularity, too.

Proof. For each z € L we define the following operation:

)tz — lzt
ZX y = ztAy

(where | z := {y |z < y}). First of all, it shall be shown that each ¢, is an
order-isomorphism. Obviously, each ¢, is well-defined and isotone. On the
other hand, for y1,y2 > = we conclude ¢, (y1) < ¢z (y2) and therefore:
7 7
i 2o (@t Ay) =2V (i) oV dalu) =2V (o Age) Lo

Hence every ¢, is even an order-embedding. In particular, it is injective, so
we gain | 12| < | |2t | for each x € L. This implies

< =St < S bt B S s = <

T€EL €L €L
So in the inequation, the ”<” is in fact an ”=" which yields > ;| T z| =
> ser | L 1|, Because we have | 1 z| <| | | for each summand, this in turn
implies | 1 2| = | | #| for each 2 € L. So every ¢, is bijective and therefore

an order-isomophism.
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Now define:

lzt = 1z
Py
y —= xVy
7
For y > z we conclude: ¢,(¢,(y)) = z V (2 A y) ) y. Therefore the
mapping ¥, o ¢, is in fact the identity on 1 z, which implies that i, is an
ismorphism. For y € |z we obtain ¢, (1(y)) =y, e.g.

ygxl:yzxLA(xVy)

Since * is involutorial, we can exchange z with z* (and vice versa), which

finally yields
y<z=y=zA(ztVy) . q.e.d.
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