
Towards Scalingless Generation of Formal Contexts

from an Ontology in a Triple Store

Frithjof Dau, SAP Research

Abstract.The EU-funded research project CUBIST investigates how Formal

Concept Analysis can be applied as a Visual Analytics tool on top of informa-

tion stored in a Triple Store (TS). This paper provides first steps for utilizing

SPARQL in order to generate formal contexts out of the data in the TS, where

the emphasis is put on using object-properties between individuals. Thus is

complements FcaBedrock, which will be used in CUBIST as well and focuses

on the scaling of datatype-properties between individuals and literals. It is dis-

cussed how the approaches of this paper and FcaBedrock can be combined.

1 Introduction

The EU funded research project CUBIST
1
 targets new approaches to Business Intelli-

gence (BI) by combining essential features of Semantic Technologies, Business Intel-

ligence and Visual Analytics based on FCA (Formal Concept Analysis).

The Visual Analytics part of CUBIST is complementing traditional BI-means by uti-

lizing FCA for analyzing the data in the triple store. FCA is a well-known theory of

data analysis which allows to conceptually clustering objects with respect to a given

set of attributes and then visualize the (lattice-ordered) set of clusters, e.g. by means

of Hasse-diagrams. The starting point of FCA is a formal context (O,A,I) consisting of

a set O of formal objects, a set A of formal attributes, and an incidence-relation M ⊆

O × A between the formal objects and attributes. There exists a variety of FCA-tools
2
,

but nearly all of them take a formal context as input. Real data to be analyzed, how-

ever, often comes in different forms:

• conceptually, often attributes are not binary, but have values like numbers,

strings, or dates (e.g. we have many-valued attributes)

• technically, data can come in form of csv-files, databases, triple stores, etc

For dealing with many-valued attributes, the most-used method is conceptual scal-

ing [1]. Essentially, for a given-many valued attribute, a conceptual scale is a specific

context with the values of the many-valued attribute as objects. The choice of the

attributes of the scale is a question of the design of the scale: The attributes are mea-

ningful attributes to describe the values; they might be different entities or they might

even be the values of the property again. Using a conceptual scale, a dataset with a

many-valued attribute can be “translated” into a formal context, where the objects are

the objects of the dataset and the attributes are the attributes of the conceptual scale.

1 www.cubist-project.eu
2 See http://www.upriss.org.uk/fca/fcasoftware.html for a maintained list of FCA-software

To the author’s knowledge, there are essentially two tools which allow for scaling

real datasets:

• ToscanaJ [2] is a suite of tools which allows to creating conceptual scales out

of data from a relational database and then interactively visualizing and ex-

ploring the generated concept lattices

• FcaBedrock [3,4] is a tool which converts csv-files into formal contexts. It is

“taking each many-valued attribute and converting it into as many Boolean

attributes as it has values and converting continuous values using ranges.” [4]

The approach of ToscanaJ is a two-step approach: First, in the design phase of a

conceptual information system, the conceptual scales are created by an FCA-

experienced designer. In the run-time phase, these scales are used by the user to ex-

plore the data. The downside of this approach is that the scales are predefined in the

design-phase, which in turn implies that the lattice-structure of the scales is fixed, thus

ToscanaJ does not really allow new structural insights into the data to be obtained. In

the beginning of CUBIST, a modified version of ToscanaJ, called ToscanaJTS (“TS”

for “Triple Store”) has been developed which acts on a triple store instead of a data-

base [5,6]. ToscanaJTS shows the applicability of FCA on top of a triple store, but it

inherits the above discussed downsides of ToscanaJ as well.

The approach of FcaBedrock slightly differs from ToscanaJ. Similar to ToscanaJ,

there is information needed on how to convert real data into a formal context. As

stated in [4] “FcaBedrock solves these problems by documenting data conversions in

re-usable, editable, meta-data-files called bedrock files.” The difference to ToscanaJ

is that the formal attributes of the generated formal context are not manually defined

during the design phase, but they are created on the fly from the real data and the

meta-information in the bedrock files. In this respect, FcaBedrock better serves the

purpose to generate formal contexts out of the real data on the fly. For CUBIST,

though, there are the following disadvantages: First, FcaBedrock puts a focus on

many-valued attributes, but –as it will be discussed in the next sections- there are

indeed possibilities to obtain binary relations directly (without scaling) out of the

information in a triple store. Secondly, the existing version of FcaBedrock needs csv-

files as input. This disadvantage, though, is targeted: A new version of FcaBedrock

which acts directly on a triple store is currently developed within CUBIST.

Data in a triple store modeled with RDFS is essentially structured as follows:

• First of all, we have individuals in a triple store. Individuals are instances of

RDFS-types, which are hierarchically ordered classes

• There are binary relationships called object properties between individuals.

Similarly to types, these properties can be hierarchically ordered.

• Finally, we can assign values (strings, numbers, dates, etc) to individuals by

means of datatype properties.

Having said this, a triplestore-enabled version of FcaBedrock can essentially deal

with the conversion of datatype properties into formal contexts. On the other hand, as

object properties are binary relations between indivuals, they give naturally rise to

formal contexts, where the domain of an object property can serve as the set of formal

objects and the range as the set of formal attributes. This first idea is too narrow. This

paper discusses first steps on how to utilize object properties in different ways in or-

der to generate formal contexts between resources in a triple store. As this paper deals

with utilizing object properties for FCA, and as FcaBedrock deals with utilizing data-

type properties, the ideas presented in the paper are complementing the ideas which

underly the creation of context in FcaBedrock. It is planned to combine the approach

of FcaBedrock and the ideas in this paper to provide in CUBIST a full-fledged ap-

proach to generate formal contexts out of the data (individuals, object properties,

datatype properties) in a triple store.

2 Prerequisites

We will exemplify most of the ideas with the data from the HWU use case [7] in

CUBIST. In order to understand the examples, the use case and the underlying ontol-

ogy [8,9] shall be briefly introduced.

The HWU use case deals with data about gene expressions in mouse embryos. The

core information are triples of the form (gene, tissue, level of expression), where:

• A gene is a unit of instruction providing directions for tasks in the develop-

ment of a mouse, e.g. the creation of a protein.

• A tissue is a anatomical part of a mouse embryo. Tissues are ordered via a

part-of-relation. Moreover, each tissue is uniquely assigned to a Theiler Stage,

being a “time-slot” in the development of a mouse.

• The level of expression or strength states whether a gene is expressed in a tis-

sue, or whether it is known that it is not expressed (this can even be more fine-

grained described as weakly, moderate or strongly expressed), or whether it is

unknown whether the gene is expressed or not (this can even be more fine-

grained described as “not examined” or “possible).

Such a triple is called textual annotation and concluded from some experiments.

Each experiment consists of one or more textual annotations.

The data of the HWU use case has been converted to an RDFS-ontology and stored

in a triple store (OWLIM
3
). The schema of the HWU-ontology is provided in Fig. 1.

In order to create formal contexts out of the HWU-data in the triple store, we have

developed a small tool which takes a SPARQL-query as input and converts the result

of the SPARQL-query into a context. Essentially, the tool works as follows: The re-

sult of a SPARQL-query is a table, where the columns correspond to the query va-

riables. It is possible that cells in the table are not filled (this can happen if the

OPTIONAL-clause of SPARQL is used). The names of the query variables determine

whether the variable is used to generate a formal object or a formal attribute: Va-

riables starting with “o” generate objects, variables starting with “a” generate

attributes, and all other variables have no impact on the generated context. If more

than one variable starts with “o”, then the result for these variables are simply conca-

tened (with a divider ‘--‘) to generate an object name. The case of more than one vari-

able starting with “a” is handled in a similar manner. Finally, if we have a row in the

SPARQL-result which generates both an object and an attribute, a cross in the corres-

3 http://www.ontotext.com/owlim

ponding incidence relation is set. An (artificial) example for this algorithm is provided

in Fig. 2.

Fig. 1. The ontology for the HWU use case in CUBIST

The result of a SPARQL-query The generated formal context

Obj1 Obj2 Att1 Att2

O1

O1 O2

 O3

 A1

 A1 A2

 A2

O4 A3

O5 O6 A4

O5 O7 A5 A6

O5 O7 A4

 A1 A1—A2 A2 A3 A4 A5—A6

O1

O1—O2

O3

O4 X

O5—O6 X

O5—O7 X X

Fig. 2. From SPARL-query-results to formal contexts

Before we come to the next section, let us finally state two general assumptions:

1. URIs are the unique identifiers for resources, but they might be too clumsy to

be used as names for the resources. We will use labels instead, thus we assume

that each resource in the triple store is appropriately labeled using rdfs:label,

and we more over assume that different entities have different labels.

2. Secondly, as SPARQL is agnostic to inferencing, we naturally assume that

the information in the triple store is closed under RDFS-entailment.

Both assumptions hold in the given HWU-dataset.

3 SPARQRL-queries

3.1 Simple Pattern: Linking entities with a chain of properties

The very essence of a formal context is the incidence relation, being a binary rela-

tion between objects and attributes. RDF-properties in turn are binary relations as well

(between RDF-resources). Thus any RDF-property linkingproperty already

gives rise to a formal context, via the following SPARQL-query:

Most basic SPARQL-query for generating a formal context
SELECT DISTINCT ?obj ?att WHERE {

?objRessource rdfs:label ?obj .

?attRessource rdfs:label ?att .

?objRessource :linkingproperty ?attRessource . }

This pattern is anyhow too simple as a general pattern for generating contexts, and

we have to extend it. For the following considerations, let us assume we want to in-

vestigate the tissues of Theiler stage 07 and which genes are detected in those tissues.

1. First of all, as RDF is graph-based, we can have in RDF chains of properties be-

tween resources. This particularly applies when we have reified relations. For our

example investigation, note that there is no direct property linking tissues and

genes: Instead, we have textual annotations linking them. So we have to consider

the following chain of properties:
4

2. In the following, resources which are not directly queried, like the (unknown) tex-

tual annotations, will be called “intermediate resources”.

3. The property in_tissue in the example above moreover shows that in the chain

of properties, some properties might be traversed in their opposite direction.

4. It is sensible to assume that all queried resources as well as intermediate resources

are retrieved from some RDF-type. In our example, we have Tissue and Gene for

the queried resources and Textual_Annotation for the intermediate resource.

5. Finally, we might further restrict the set of objects, or the set of attributes, by some

constraints. In our example, we are interested in investigating a specific Theiler

stage and thus instead of taking all tissues into account, we restrict ourselves only

to those tissues from that Theiler stage. Similarly, we might impose constraints on

the intermediate resources as well. In our example, we are only interested into

combinations of tissues and genes where the gene is detected (maybe weakly,

moderate or strongly) in the tissue, but we are not interested into combinations

where the gene is not detected. Thus we have the following additional constraints:

We are now prepared write a SPARQL-query which generates the wished context.

4 We use the notion of conceptual graphs [10] and query graphs [11] to diagrammatically depict

the queries.

SPARQL Query 1 Explanation
SELECT DISTINCT ?obj ?att WHERE {

?x1 rdf:type :Tissue ; rdfs:label ?obj .

?x1 :has_theiler_stage :theiler_stage_TS07 .

?x3 rdf:type :Gene ; rdfs:label ?att .

?x2 rdf:type :Textual_Annotation.

?x2 :in_tissue ?x1 .

?x2 :has_involved_gene ?x3 .

?x2 :has_strength :level_detected_derived .}

Select Clause for objects and attributes

Type of objects (see 3))

Additional Constraint for objects (see 4))

Type of attributes (see 3))

Type of intermediate resource (see 3))

1st and 2ndproperty in the chain of properties (see 1),

first prop. is traversed in opposite direction. (see 2))

Add. constraint for intermediate ressources (see 4))

It should be noted that this SPARQL-query does not retrieve all tissues of Theiler

Stage 07: Instead, only those tissues are retrieved where a gene is detected. Let us call

such a query “object-restricted”. Vice versa, not all genes are retrieved, but only those

who are detected in some tissue of Theiler stage 07. Let us call those queries

“attribute-restricted”. In other words: In the formal context, we have by definition

neither empty rows (due to the query being object-restricted) nor empty columns

(query being attribute-restricted). One might want to change this to object-unrestricted

queries, i.e. retrieving all tissues of Theiler stage 07, allowing empty rows, and/or

attribute-unrestricted queries, i.e. retrieving all genes, allowing empty columns. So

we have four variants of query 1 to consider.

As there are nearly 7000 genes, a query which retrieves all of them and adds them

as formal attributes in the formal context does not seem sensitive. But as there are

only 16 tissues in Theiler stage 07, retrieving all of them and adding them as formal

objects to the formal contexts is reasonable. So let us consider the object-unrestricted

variant of query 1. There are two ways to obtain this in a SPARQL-query: Either via

utilizing the OPTIONAL-clause of SPARQL, or using the UNION-operator. Both

queries are given below.

SPARQL Query 1a, utilizing OPTIONAL SPARQL Query 1b, utilizing UNION
SELECT DISTINCT ?obj ?att WHERE {

?x1 rdf:type :Tissue ; rdfs:label ?obj .

?x1 :has_theiler_stage :theiler_stage_TS07 .

OPTIONAL

{ ?x3 rdf:type :Gene ; rdfs:label ?att .

 ?x2 rdf:type :Textual_Annotation.

 ?x2 :in_tissue ?x1 .

 ?x2 :has_involved_gene ?x3 .

 ?x2 :has_strength :level_detected_derived .}

}

ORDER BY ?obj ?att

SELECT DISTINCT ?obj ?att WHERE {

{ ?x1 rdf:type :Tissue ; rdfs:label ?obj .

 ?x1 :has_theiler_stage :theiler_stage_TS07 . }

UNION

{ ?x1 rdf:type :Tissue ; rdfs:label ?obj .

 ?x1 :has_theiler_stage :theiler_stage_TS07 .

 ?x3 rdf:type :Gene ; rdfs:label ?att .

 ?x2 rdf:type :Textual_Annotation.

 ?x2 :in_tissue ?x1 .

 ?x2 :has_involved_gene ?x3 .

 ?x2 :has_strength :level_detected_derived . }

}

ORDER BY ?obj ?att

Beginning of resultset Beginning of resultset
obj att

EMAP:25772

EMAP:42 Etv5

EMAP:42 Smad2

…

obj att

--

EMAP:25772

EMAP:42

EMAP:42 Etv5

EMAP:42 Smad2

…

Table 1. SPARQL-query for gene-tissue combinations of TS 07, all TS07 tissues retrieved

From an RDF-point of view, these queries are semantically (slightly) different: In

query 1a, we have a row in the resultset with a tissue t and without a gene if and only

if the gene belongs to Theiler stage 07 and no gene is detected in that tissue, whereas

in query 1b we have a row in the resultset with a tissue t for any t belonging to Theiler

stage 07. An example where the resultsets differ is tissue EMAP:42, as it can be seen

in Table 1. So the resultset of query 1b is a superset of the resultset of query 1a. Any-

how, the formal contexts generated with queries 1a and 1b are indeed the same, thus

from an FCA-perspective, the queries are equivalent.

Please note moreover that in query 1b, the clause querying the tissues is repeated in

the UNION clause, whereas a repetition of the clause is not. This renders query 1b

(slightly) more complicated.

Having these two differences in mind, one can conclude that query 1a has to be

preferred over query 1b.

The patterns of both queries can easily be transferred to the case of attribute-

unrestricted queries. For queries which are both object- and attribute-restricted, only

the UNION-variant can be easily extended.

Fig. 3. Concept lattices retrieved from query 1 (left) , and query 1a or query 1b (right)

3.2 Combining different variables to objects or attributes

In the previous section, we have investigated for Theiler stage 07 tissue-gene com-

binations such that the gene is detected in the respective tissue. There are anyhow

different levels of being detected: weak, moderate, and strong. Moreover, in some

experiments a gene is detected without information on how strong the expression of

the gene in that tissue is. So we have four kinds of being detected, called “weak”,

“moderate”, “strong” and “detected”. All of them are subsumed by an artificial

strength called “detected derived”. See Fig. 1, where these levels are depicted. The

information on the level of expression is not provided by the SPARQL-queries of the

last section, but it can easily be added by slightly altering the queries. We adopt query

1b as following, highlighting the changes in the query:

SPARQL query 1b with level of expression added
SELECT DISTINCT ?obj ?att1 ?att2 WHERE {

?x1 rdf:type :Tissue ; rdfs:label ?obj .

?x1 :has_theiler_stage :theiler_stage_TS07 .

OPTIONAL

{ ?x3 rdf:type :Gene ; rdfs:label ?att1 .

 ?x2 rdf:type :Textual_Annotation.

 ?x2 :in_tissue ?x1 .

 ?x2 :has_involved_gene ?x3 .

 ?x2 :has_strength :level_detected_derived .

 ?x2 :has_strength ?x4 .

 ?x4 rdf:type :Strength ; rdfs:label ?att2 . }

}

ORDER BY ?obj ?att1 ?att2

In the next figure, the resulting concept lattice is provided.

Fig. 4. Concept lattice of altered query 1b, now providing information about strengths

The lattices of Fig.3 and Fig. 4 have the same structure: Essentially, only the in-

formation in the attribute labels are more fine-grained. In other cases, combining

more result variables to attributes might yield in valuable, new structural insights. To

provide an HWU-example for this effect, we consider the following query to retrieve

contradicting textual annotations, which was possible in the previous version of the

tool:

SPARQL query 2 for finding contradictions
select distinct ?o0 ?a0 where {

 ?x0 rdf:type :Tissue ; rdfs:label ?o0 .

 ?x1 rdf:type :Tissue ; rdfs:label ?a0 .

 ?x2 rdf:type :Gene ; rdfs:label ?o1 .

 ?ta1 :in_tissue ?x0; :has_involved_gene ?x2; :has_strength :level_detected_derived .

 ?ta2 :in_tissue ?x1; :has_involved_gene ?x2 ; :has_strength :level_not_detected .

 {

 { ?x0 :is_part_of ?x1 . Filter(!sameTerm(?x1,?x0)) }

 UNION

 { Filter(sameTerm(?x0,?x1)) } }}

This query retrieves pairs of tissues t1 and t2, where

• t1 is_part_of or the same tissue as t2 (that is, we are using propagation of tis-

sues), and

• there exists a gene g which is (possibly weakly, moderate, or strong) detected

in t1 and not detected in t2

Of course, if a gene g is expressed in a t1, then one can conclude that it is expressed

in t2 as well. That is, the query finds out pairs of tissues (t1 ,t2) where different expe-

riments concerning the gene g come to contradicting results. As we will discuss the

example further, we fix the following notation describing the roles of the tissues: The

tissue t1 will be called lower or detected tissue, and t2 will be called upper or unde-

tected tissue. Next, the concept lattice generated by query 2 is provided.

Most of the lattice does not provide, apart from the tissue-names, any structural in-

formation. On the left hand side, however, this lattice does reveal some insights:

• There are two contradicting tissue pairs with EMAP:106 as upper (undetected)

tissue, as we have the two lower tissues EMAP:109 and EMAP:115. We don’t

know anyhow how many pairs of textual annotations cause these contradictions: it

must be at least two pairs, but for example, we might have a contradiction for

many genes, detected in EMAP:109 and not detected in EMAP:106. The same

concern applies to any node in the lattice: We never know how many contradict-

ing pairs of textual annotations we have for one node.

• Similarly, we have two contradicting tissue pairs with EMAP:987 as lower (de-

tected) tissue.

• The left hand side is most interesting: There is a number of contradicting tissue

pairs with EMAP:1199 as upper tissue, namely 7 (6+1). Maybe the experiment(s)

investigating EMAP:1199 deserve a closer look? We have moreover a dependen-

cy: Whenever a lower (detected) tissue contradicts with EMAP:1218 as upper

(nondetected) tissue, it contradicts with EMAP:1199 as well (but not vice versa).

Now, for this query, we lose the information which genes cause the contradictions.

Knowing about the involved genes would allow to partly cope with the questions

raised above. We do only a slight change in the query by adding the variable ?o1 to

the list of variables in the select-clause, i.e. we reuse the last query and change it to

query 2b by starting with “select distinct ?o0 ?a0 ?o1 where “ . Be-

low, the corresponding lattice is provided.

In the last discussion, we speculated that “we might have a contradiction for many

genes, detected in EMAP:109 and not detected in EMAP:106.” But now we see this

contradiction is only causedwe by one gene (Fgf4), and same holds true for all nodes:

all contradicting tissue pairs are caused by exactly one gene. Moreover, the lattices

are not isomorphic: The difference is highlighted in the next screenshots:

Note that the contradiction between EMAP:1218 and EMAP:1119 as upper tissues

and EMAP:1218 as lower tissue are caused by different, thus the attribute dependency

between EMAP:1218 and EMAP:1119 on the left hand side is lost on the right hand

side. It seems even more that EMAP:1119 deserves a closer observation.

3.3 Attributes of different types

So far, in the queries we have provided we have as objects or attributes either enti-

ties of one RDF-type, or combinations (via string-concatenation) of different types

into one object or attribute. In some cases, though, it can be desirable to have objects

or attributes of different types. This shall be exemplified with query 2 where we have

analyzed contradiction pairs of tissues. These tissues in turn are assigned to Theiler

stages. In the last query, we used

?x1 rdf:type :Tissue ; rdfs:label ?a0 .

to query the tissues. If we replace this line by

?x1 rdf:type :Tissue .

?x1 :has_theiler_stage ?ts1 .

?ts1 rdfs:label ?a0 .

We obtain the Theiler stages instead. Now, utilizing the SPARQL-“UNION”-

operator, it is possible to “combine” these slightly different queries, resulting in a

formal context where the attributes are either tissues or Theiler stages.

The result lattice extends the lattice for query 2 by adding Theiler stages. It looks

as follows:

Fig. 5. Concept lattice for contradicting pairs of tissues

The nice lattice structure is unsurprising: It is caused by the fact that each tissue is

assigned exactly one Theiler stage (and the part_of-relation only applies to tissues in

the same stage).

The approach hereby exemplified it particularly helpful if attributes (here: tissues)

are in turn classified by other attributes (here: Theiler stages). For this reason, it can

easily be transferred to RDFS-instances and their corresponding types, thus utilizing

the type-hierarchy in an RDFS-ontology. We have not exemplified this approach in

this paper as the underlying ontology does not provide interesting type hierarchies.

4 Summary and next steps

In the previous section, we have discussed how object properties between individ-

uals in a triple store can be utilized for generating formal contexts. We have seen that

only utilizing plain object properties between individuals is not sufficient: Instead,

one should consider chains of object properties with constraints for intermediate

nodes, and one should consider different means for adding formal attributes generated

from different RDFS-types to the formal context. This is anyhow only a first step for

generating formal contexts in CUBIST. There are essentially two tasks to be con-

ducted:

1. First, it cannot be expected from a CUBIST user to write SPARQL-queries on

her own. For this reason, we have to find common patterns for the generation of

formal contexts of SPARQL-queries. Such patterns can be used in a wizard

which guides the user in the creation of formal contexts without showing any

SPARQL-queries.

2. Second, as already mentioned, the ideas presented in this paper complement the

approach of FcaBedrock, thus it has to be investigated how these approaches can

be combined.

A closer look at our approach reveals that there is no need that the SPARQL-

queries, as presented in the paper, only return (the labels of) RDFS-individuals: Of

course, one can extend the approach to queries where some of the variables return

literals, e.g. strings or numbers. In our approach, for a given query-variable, each

literal would be taken as it is for generating a formal attribute, which would be in

most cases not desirable. Instead, for such variables, the process of conceptual scaling

–as carried out by FcaBedrock- should apply. Indeed, as any SPARQL-query returns

a table, it is straight-forward to feed such a table into FcaBedrock. Having said this, a

possible workflow for the generation of contexts is as follows:

1. A user selects the type of individuals she wants to investigate.

2. A wizard guides the user in the creation of a SPARQL-query. For example, the

wizard could provide properties or chains of properties (starting with the given

RDFS-type), and the user can select which chain(s) should be used in the genera-

tion of the context. Moreover, it could be possible that in this step, the user adds

additional constraints on intermediate nodes in the chain.

3. For each (chain of) properties selected by the user, the range consists either of

individuals or of literals of a given type. In the former case, the labels of the indi-

viduals are used for the generation of attributes, whereas in the latter case, the

values are transformed into formal contexts with the help of FcaBedrock.

That is, generally speaking, the meta-information which generated a formal context

out of the triple store consists of a SPARQL-query and, for each query variable, in-

structions on how the results of the variable are used to generate objects and

attributes. The whole process can be depicted as follows:

In the further course of CUBIST, the consortium will investigate and implement a

unified approach for the generation of formal context which takes individuals, object

properties and datatype properties into account, leading to a fully-fledged generation

of context out of the triple store on the fly.

Acknowledgement

This work is part of the CUBIST project (“Combining and Uniting Business Intelligence

with Semantic Technologies”), funded by the European Commission’s 7th Framework Pro-

gramme of ICT, under topic 4.3:Intelligent Information Management.

The herein used data orginates data from the Edinburgh Mouse Atlas of Gene Expression

(EMAGE) and is released under a creative commons license.

5 References

1. Ganter, B., Wille, R.: Conceptual Scaling. In: Roberts, F. (ed.) Applications of Combina-

torics and Graph Theory to the Biological and Social Sciences. IMA, vol. 17, pp. 139–168.

Springer, Heidelberg (1989)

2. Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual Information

Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS

(LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

3. Andrews, S.: Data Conversion and Interoperability for FCA. In: CS-TIW 2009, pp.42–49

(2009), http://www.kde.cs.uni-kassel.de/ws/cs-tiw2009/proceedings_final_15July.pdf

4. Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator. In: Croitoru,M.,

Ferre, S. and Lukose, D. (eds.): Proceedings of ICCS 2010, Kuching, Malaysia. LNAI

6208, Springer-Verlag (2010)

5. F. Dau and B. Sertkaya. Formal Concept Analysis for Qualitative Data Analysis over

Triple Stores. In: Olga De Troyer, Claudia Bauzer Medeiros, Roland Billen, Pierre Hallot,

Alkis Simitsis and Hans Van Mingroot (eds): Advances in Conceptual Modeling. Recent

Developments and New Directions - ER 2011 Workshops FP-UML, MoRE-BI, Onto-

CoM, SeCoGIS, Variability@ER, WISM. Springer, LNCS, vol 6999, 2011.

6. F. Dau and B. Sertkaya. An Extension of ToscanaJ for FCA-based Data Analysis over

Triple Stores. In F. Dau (ed):

7. Proceedings of the 1st CUBIST (Combining and Uniting Business Intelligence with Se-

mantic Technologies) Workshop 2011, CEUR proceedings, vol 753, 2011.

Simon Andrews, Keneth McLeod: Gene Co-Expression in Mouse Embryo Tissues. In F.

Dau (ed): Proceedings of the 1st CUBIST (Combining and Uniting Business Intelligence

with Semantic Technologies) Workshop 2011, CEUR proceedings, vol 753, 2011.

8. McLeod, K., Ferguson, G., Burger, A.: Argudas: arguing with gene expression informa-

tion. In: Paschke, A., Burger, A., Splendiani, A., Marshall, M.S., Romano, P. (eds.) Pro-

ceedings of the 3rd International Workshop on Semantic Web Applications and Tools for

the Life Sciences (December 2010)

9. Richardson, L., Venkataraman, S., Stevenson, P., Yang, Y., Burton, N., Rao, J., Fisher, M.,

Baldock, R.A., Davidson, D.R., Christiansen, J.H.: EMAGE mouse embryo spatial gene

expression database: 2010 update. Nucleic Acids Research 38, Database issue, D703–

D709 (2010)

10. J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine. Addison

Wesley Publishing Company Reading, 1984.

11. F. Dau: Query Graphs with Cuts: Mathematical Foundations. In A. Blackwell, K. Mar-

riott, A. Shimojima (Eds): Diagrammatic Representation and Inference. LNAI 2980,

Springer Verlag, Berlin–New York 2004, 32-50.

