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Abstract. The system of Peirce’s existential graphs is a diagrammatic
version of first order logic. To be more precise: As Peirce wanted to
develop a logic of relatives (i.e., relations), existential graphs correspond
to first order logic with relations and identity, but without constants or
functions. In contemporary elaborations of first order logic, constants
and functions are usually employed. In this paper, it is described how
the syntax, semantics and calculus for Peirce’s existential graphs has to
be extended in order to encompass constants and functions as well.

1 DMotivation and Introduction

It is well-known that Peirce (1839-1914) extensively investigated a logic of rela-
tions (which he called ‘relatives’). Much of the third volume of the collected
papers [HB35] is dedicated to this topic (see for example “Description of a
Notation for the Logic of Relatives [...]” (3.45-3.149, 1870) “On the Algebra
of Logic” (3.154-3.251, 1880), “Brief Description of the Algebra of Relatives”
(3.306-3.322, 1882), and “the Logic of Relatives” (3.456-3.552, 1897)). As Burch
writes, in Peirce’s thinking ’reasoning is primarily, most elementary, reasoning
about relations’ ([Bur91], p. 2, emphasis by Burch).

Starting in 1896, Peirce invented a diagrammatic form of formal logic, namely
his system of existential graphs [Zem64, Rob73, Shi02, PS00, Dau06b]. The Beta
part of this system corresponds to first order logic (FO) [Zem64, Dau06b]. To be
more precise: As Peirce investigated a logic of relations, the Beta part of existen-
tial graphs is equivalent to FO with relations and identity, but without constants
or functions. In contrast to that, contemporary symbolic formalizations of FO
are intended to represent statements about constants, relations, and functions.
This paper shows how the the syntax, semantics, and the calculus of existential
graphs has to be extended in order to cover constants and and functions as well.

This paper is part of the author’s research on Sowa’s conceptual graphs and
Peirce’s existential graphs [Dau02, Dau03, Dau06d, Dau06a, Dau06c, Dau06b].
It aims to provide a sufficiently formal elaboration of the paper’s goal. For this
reason, a formal elaboration of existential graphs, including their syntax, seman-
tics, and calculus, would be needed. Due to space limitations, this is not possible.



To resolve this problem, only those definitions and theorems of [Dau03, Dau06b)
which are needed to keep this paper almost self-contained will be given.

In contrast to concept graph with cuts (CGwCs)® or formulas of FO, existential
graphs are not per se discrete structures. To formalize them, [Dau06b] takes
a two-step approach. First, discrete structures, so-called EXISTENTIAL GRAPH
INSTANCES (EGIs), are introduced. An EGI can be best understood as one
(of many) possible discrete formalizations of a given existential graph. Then all
different EGIs which formalize the same (naive) existential graph are aggregated
in a class, and each of these classes is called a FORMAL EXISTENTIAL GRAPH.
For further details, see [Dau06b]. Due to space limitation, the scrutiny in this
paper is not carried out on formal existential graphs, but on EGIs instead.

Sec. 2 provides a short overview of the definitions and theorems of [Dau03,
Dau06b] which are needed in this paper for defining the syntax and semantics of
EGIs. The main task is to extend the calculus. In Sec. 3, the general methodology
for extending the calculus is provided. Then new rules for constants and function
names are given in Sec. 4, and their soundness and completeness is proven. In
Sec. 5, a short example for a formal proof within the extended system of EGIs
is provided. Finally, Sec. 6 discusses the results of the paper.

2 Syntax and Semantics

We start with the underlying structure for EGIs and CGwCs, namely relational
graphs with cuts, and a quasiorder < on all elements of such graphs.

Definition 1 (Relational Graphs with Cuts). 4 RELATIONAL GRAPH WITH
CUTS is a structure (V, E v, T,Cut,area), where

— V, E and Cut are pairwise disjoint, finite sets whose elements are called
VERTICES EDGES and CUTS, respectively,

—v:E— Uen, V¥ is a mapping,

— T is a single element with T ¢ V' U E'UCut, the SHEET OF ASSERTION, and

—area : Cut U{T} — PV U E U Cut) is a mapping with a) ¢; # c3 =
area(cy) Narea(cy) =0 , b)) VUE U Cut = Udecutury area(d), and c)
c ¢ area™(c) for each ¢ € Cut U{T} and n € N (with area’(c) := {c} and
area"t1(c) := J{area(d) | d € area™(c)}).

For an edge e € E with v(e) = (v1,...,v;) we set |e| :== k. The vertices, edges
and cuts will be called the ELEMENTS of the graph. The elements of Cut U{T}
are called CONTEXTS. Finally, as for every x € VU EUCut we have exactly one
context ¢ € Cut U{T} with x € area(c), we can write ¢ = area™"(x) for every
x € area(c), or even more simple and suggestive: ¢ = ctz(x).

! CGwCs are a formal elaboration of simple conceptual graphs [Sow84, Sow92, Sow00,
CM92, CM95], where the cuts of Peirce’s existential graphs are added to allow for
negation of subgraphs.



Definition 2 (Ordering on the Contexts, Enclosing Relation). Let & :=
(V,E,v, T,Cut,area) be a relational graph with cuts. We define a mapping 3 :
VUEUCutU{T} — CutU{T} by B(x) :=x for x € Cut U{T}, and B(z) :=
ctx(z) forx € VUE. Next we set x <y <= In € No.f(z) € area™(B(y)) We
definerx <y <=z <yANyLzrxandz <y << x<yAy#x. Fora context
¢ € Cut U{T}, we set furthermore <[c] := {x e VUEUCutU{T} |z < ¢}
and <[c] :={x €e VUEUCut U{T} |z < c}. Each element x of | J,, ¢y area”(c)
is said to be ENCLOSED BY c¢, and vice versa: ¢ is said to ENCLOSE z. For each
element of area(c), we moreover say that it is DIRECTLY ENCLOSED BY c.

The relation < is indeed a quasiorder. Moreover, on the contexts, it is a tree.
The proof for the following lemma can be found in [Dau03] and [Dau06b].

Lemma 1 (< Induces a Tree on the Contexts). For a relational graph with
cuts & := (V, E,v, T,Cut,area), < is a quasiorder. Furthermore, < ‘CutU{T} ]
an order on Cut U {T} which is a tree with T as greatest element.

When defining the semantics, vertices which are deeper nested than some edge
they are incident with cannot be evaluated. So this case has to be ruled out. For
this reason, the next definition is needed.

Definition 3 (Dominating Nodes). If ctz(e) < ctz(v) (& e < wv) for every
e€ E andv € Vg, then & s said to have DOMINATING NODES.

Next, we will define EGIs to be relational graphs with cuts, where the edges
are additionally labelled with names. If EGIs are used to formalize existential
graphs, we would only need relation names. For the purpose of this paper, we
will introduce an alphabet with names for constants, functions and relations.

Definition 4 (Alphabet with Constants, Functions and Relations). An
ALPHABET is a structure (C,F,R,ar) of CONSTANT NAMES, FUNCTION NAMES
and RELATION NAMES, resp., together with an arity-function ar : F UR — N
which assigns to each function name and relation name its arity. To ease the
notation, we set ar(C) =1 for each C € C. We assume that the sets C,F, R are
pairwise disjoint. The elements of C U F U R are the NAMES of the alphabet.
Let =€ Ry be a special name which is called IDENTITY.

Later on, we will interpret an n-ary function F' to be an n-ary relation which sat-
isfies a specific property, namely: For each n objects o1, ...,0,_1 exists exactly
one object o, with F(o01,02,...,0,-1,0,). So, functions can be understood as
special relations. Please note that we adopt the arity of relations for functions.
That is, an n-ary function assigns a value to n—1 arguments. This understanding
of the arity of a function is not the common one, but it will ease the forthcoming
notations. Analogously, even an constant o can be understood as a special rela-
tion, namely the relation {(0)}. That is: constants correspond to unary relations
which contain exactly one element (or to functions with zero arguments).

Now we are prepared to define existential graph instances (EGIs).



Definition 5 (Existential Graph Instance over (C,F,R,ar)). An EX-
ISTENTIAL GRAPH INSTANCE (EGI) OVER AN ALPHABET A = (C,F,R,ar) is
a structure & := (V, E, v, T,Cut,area, k) where (V,E,v, T,Cut,area) is a rela-
tional graph with cuts and dom. nodes, and k : E — C U F U R is a mapping
such that le| = ar(k(e)) for each e € E. The elements of E with k(e) == are
called IDENTITY-EDGES. The system of all EGIs over A will be denoted by EGTHA.

As said in the introduction, existential graphs are not per se discrete structures.
The major problem in formalizing existential graphs is caused by lines of identi-
ties and networks of lines of identities (i.e., ligatures). Peirce understood a line of
identity to be composed of bold dots, which can be interpreted to denote existen-
tially quantified objects. These dots overlap, and the overlapping is interpreted
that the objects denoted by the dots are identical. This understanding of the
‘inner structure’ of a line of identity gives rise to the discrete EGIs, where dots
are formalized by the vertices, and overlapping of dots is formalized by edges
labelled with =. But depending on how many dots we assign to a line of identity,
different EGIs can formalize a given existential graph. Note that an existentially
quantified object is syntactically formalized in CGs by a concept box .
Due to this obsertavion, EGIs can in turn understood to be those CGwCs where

only concept boxes of the form appear.

Below, the proposition ‘there is a cat which is not cute or which is not on a
mat’ is depicted in several ways. First, an existential graph is provided. Next,
two possible EGI-formalizations of this graph are given. As just mentioned, they
only differ in the number of dots assigned to the lines of identity. For this reason,
in the formalization of [Dau06b], these two EGIs are members of the class which
formalize the given existential graph. The first EGI has in fact the minimal
number of vertices, the second EGI contains redundant vertices (the calculus for
EGIs is much easier to formalize if redundant vertices are allowed, for this rea-
son, EGIs with redundant vertices are considered as well). In the diagrammatic
representation of EGIs, the vertices, as usual in graph theory, are drawn as bold
dots. Note that identity-edges are drawn as simple lines connecting the respective
bold dots. Finally, for the first EGI, the corresponding CGwC is depicted.

cute
cat —e—
{ on—e—mat
cute
cat
cute
cat e—e—
{ on—e—e—mat

Next we define isomorphisms and partial isomorphisms between EGIs. The for-
mal definition of an isomorphism is canonical. The rules of the calculus (like
the rules of Peirce, i.e. erasure, insertion, double cut, iteration and deiteration,
or the new rules presented in this paper for constants and functions) modify a
graph within a given context. For this reason, we furthermore have a notion of
two EGIs being isomorphic except a context.




Definition 6 ((Partial) Isomorphism). For i = 1,2, let two EGIs &,; :=
(Vi, E;,vi, Ty, Cuty, area,, k;) be given.

An 1SOMORPHISM f = fy U fg U fous is composed of three bijective mappings
fv Vi = Vs, fg: E1 — Es and four : Cuty U {Tl} — Cuty U {Tg} which
satisfy fe(vi,...,vn) = (fv(v1),..., fv(vn)) for each e = (vi,...,v,) € Eq,
flareay(c)] = areax(f(c)) for each ¢ € Cuty U{T1} (with flareai(c)] = {f(k) |
k € areay(c)}), and k1(e) = ka(fr(e)) for all e € Ey.

Let furthermore two contexts ¢; € Cut; U{T;} i = 1,2, be given. For each i, let
Vi={veVi|lvLea}, Bl . ={e€ E;|e <L ¢}, and Cut;’ :={d € Cut, U{T;} |
d £ ¢;}. Let & be the restriction of &; to these sets, i.e., for area;’ := areai|cut_,
let 6; = (‘/ilsz{aV T%Cut;,areag,ni’). Iff = fVl' U

[
and k;' = Iii|Ei,, B
i

fe U four, s an isomorphism between &' and &5 with foui(c1) = c2, then f
is called (PARTIAL) ISOMORPHISM FROM ®; TO ®9 EXCEPT FOR ¢; AND Ca.

In this definition, for the restrictions area;’ and k;’, we of course agree that the
ranges of these functions are restricted to V;' U E; U Cut;’ as well. Moreover,
note that this definition relies on the graph to have dominating nodes (otherwise
it might happen that the structures ®; are no well-defined EGIs).

After defining the syntax for EGIs, we now turn to the semantics. First the
models are defined in the usual manner known from formal logic.

Definition 7 (Relational Structures over (C,F,R,ar)). A RELATIONAL
STRUCTURE OVER AN ALPHABET A = (C,F,R,ar) is a pair M := (U,I) con-
sisting of a nonempty UNIVERSE U and a function I := I¢ U Ix U Ig with

1. Io:C—U,

2. Ir : F — Upen B(U*) is a mapping where for each F € F with ar(F) =k,
I(F) € U* is (total) function I(F):U*"! - U, and

3. Ir : R — Upen B(U*) is a mapping where for each R € F with ar(R) = k,
we have I(R) € U*. The name =" is mapped to the identity relation on U.

When an EGI is evaluated in a relational structure (U, I), we have to assign
objects of our universe of discourse U to its vertices. This is done by valuations.

Definition 8 (Valuations). Let an EGI & := (V, E, v, T,Cut, area, k) be given
and let (U, I) be a relational structure over A. Each mapping ref : V' — U with
V' C V is called a PARTIAL VALUATION OF &. If V' =V, then ref is called
(TOTAL) VALUATION OF &. Let c € Cut U{T}. If V2D {v € V | v > ¢} and
V'n{v eV |v<ch =0, then ref is called PARTIAL VALUATION FOR c. If
VID{veV]v>ctand V' N{v eV |v<c} =0, then ref is called EXTENDED
PARTIAL VALUATION FOR c.

The semantics for EGIs is based on Peirce’s endoporeutic method. He read and
evaluated existential graphs from the outside, hence starting with the sheet of as-
sertion, and proceeded inwardly. During this evaluation, he assigned successively
values to the lines of identity. This idea is adopted in the next definition.



Definition 9 (Endoporeutic Evaluation of Graphs).  Let an EGI & :=
(V,E,v, T,Cut,area, k) be given and let (U,I) be a relational structure over A.
Inductively over the tree CutU{T}, we define (U,I) = &[c,ref] for each context
c € CutU{T} and every partial valuation ref : V' CV — U for c:

(U,I) E &lc,ref] <=

ref can be extended to an partial valuation ref : V'U(V Narea(c)) — U
(i.e., ref is an extended partial valuation for ¢ with ref(v) = ref(v) for
allv € V'), such that the following conditions hold:

— ref(e) € I(k(e)) for each e € ENarea(c) (edge condition))
- (U, I) = 8ld,ref] for each d € Cut N area(c) (cut condition and
iteration over Cut U{T}))

For (U,I) E &[T,0] we write (U,I) = &. If § is a set of EGIs and if & is an
EGI such that (U,I) = & for each model (U,I) that satisfies (U,I) = & for
each &' € 9, we write H = 6.

Finally, we assume that we have a sound and complete calculus for EGIs where
only relation names occur (i.e., over alphabets (0,0, R,ar)). Moreover, we as-
sume that this calculus is based on Peirce’s rules for existential graphs (erasure,
insertion, double cut, iteration and deiteration). As EGIs can be understood to
be CGwCs over alphabets without names for constants or types, we can adopt
the CGwCs-calculus of [Dau03] for this purpose. A similar calculus, directly for
EGIs, is provided in [Dau06b]. Both calculi contain Peirce’s rules? and have addi-
tional rules which are needed to handle identity edges. Due to space limitations,
no calculus is given here.

The rules of the common calculi for FO (Hilbert-style calculi, natural deduc-
tion, sequent calculi) allow only modifications of formulae at their top-level. In
contrast to that, the rules of Peirce allow modifications of a graph inside arbi-
trarily deep contexts. Due to this, Peirce’s rules are much more powerful, and
their soundness proofs can turn out to be rather complex. For this reason, both
in [Dau03] and [Dau06b], two lemmata are provided which ease the soundness
proofs. The lemma which is needed in this paper is given below.

Theorem 1 (Main Thm. for Soundness, Equivalence Version). Let
EGIs & := (V,E,v, T,Cut,area, k), & := (V' E' V' T, Cut’,ared k") be given
and let f be an isomorphism between & and &' except for ¢ € Cut and ¢’ € Cut’.
Set Cut, :={d € Cut U{T} | d £ c}. Let M be a relational structure and let
P(d) be the following property for contexts d € Cut.: Every partial valuation
ref ford satisfies M = B[d,ref] < M = &'[f(d), f(ref)]. Then, if P holds
for ¢, then P holds for each d € Cut.. Particularly, If P holds for c, we have
MEB = MEG®.

2 The formal iteration rule in [Dau06b] is more powerful than the formal iteration rule
in [Dau03] and, as it is discussed in [Dau06b], resembles better Peirce’s notion of the
iteration rule for existential graphs.



3 General Logical Background

When considering constant names and function names instead of relation names
only, we have new entailments between graphs. For example, if C' is a constant
name, the empty sheet of assertion (semantically) entails the graph ®—C

Thus it must be possible to derive this graph from the empty sheet of assertion
(which would not be possible if C' was an 1-ary relation name). The new entail-
ments must be reflected by the calculus, thus the calculus has to be extended
in order to capture the specific properties of constants and functions. There are
basically two approaches: Firstly, we can add axioms, secondly, we can add new
rules to the calculus. Besides the empty sheet of assertion, Peirce’s calculus for
existential graphs has no axioms. To preserve this property, we will adopt the
second approach. This section describes the methodology how this shall be done.

As already mentioned, constant names and function names can be understood
as relation names which are mapped to relations with specific properties. If we
have an alphabet A’ = (C, F, R, ar) with constants and function names, we can
then consider the alphabet A := (§,0,C U F U R, ar), where each name is now
understood as relation name. In this understanding, each EGI over A’ is an EGI
over A as well. Moreover, if M’ := (U,I") with I’ :== I, U I’ U I}, is relational
structure over the alphabet A’, then M := (U, I) with I(F) := I’=(F) for each
F e F, I(R) := I(R) for each R € R, and I(C) := {(L;(C)} for each C € C
is the corresponding model over the alphabet 4. We implicitly identify M and
M. Due to this convention, each model over A’ is an model over A as well. But
the models for A’ form a subclass of the models for A. That is, if we denote the
models for A" with 9 and the models for A with 9, we have My C M.

Thus we have to deal with two classes of models, which yield two entailment
relations. If §) is a set of EGIs and if & is an EGI such that M | & for each
relational structure M € 9M; with M |= & for each &’ € 9, we write § |=; &.

In Sec. 2, we assumed to have a sound and complete calculus for EGIs where
only relation names occur; that is, for EGIs which are evaluated in 9t;. In the
following, this calculus shall be denoted by F7. The soundness and completeness
of -1 can be now stated as follows: If U {&} is a set of EGIs over A, we have

HF6 = HE1 6 (1)

We seek a calculus Fo which extends 1 (that is, 2 has new rules, which will be
denoted by k2 D7) and which is sound and complete with respect to 9M1s.

The calculus k1, and hence 5 as well, encompasses the 5 basic-rules of Peirce.
Thus for both calculi, the deduction theorem (see Lemma 6.5 of [Dau03] or
Lemma. 8.7 of [Dau06b]) holds, i.e., for i = 1,2, we have

Bl &, = ki (6.(8) (2)



We will extend 1 to kg as follows: First of all, the new rules in F5 have to be
sound. Then for a set of graphs $ and an EGI & we have

HF B = HE2G (3)

On the other hand, let us assume that for each M € 9 \My, there exists a
graph &, with
Fo®a and M 6y (4)

If the last two assumptions (3) and (4) hold, we obtain that b4 is an adequate
calculus, as the following theorem shows.

Theorem 2 (Completeness of 2). A set HU{&} of EGIs over A satisfies
K3) }:2 (6] = HF B

Proof: Let 2 := {Grq | M € M \Ms3}. From (3) we conclude: =3 &y for all
G € H2. Now (4) yields:

Wgz{Mewl\Mkﬁforallﬁeﬁg} (5)

Now let §U {&} be an arbitrary set of graphs. We get:
Def

D2 = fa MecMy: if M= forall 8 € 9, then M = &

&)f.a./\/leﬁﬁlzifM)z@'forallQﬁEfJgU&thenM)205

= HUNE1 6

PO ST,

<= there are B1,...,&, € § and &},..., 8/ € H, with
G By ... B, & & ... & H6

& there are &1,...,6, € H and &,..., & € Hy with

I_l@l Gy... 6,6, 86, . . 6 )
Fo Dby, (4)

= there are &q,...,6, € H and &,..., & € Hy with

o ® .. es;n@l Gy... 6, 8] 8)... 6, )

9% there are B1,...,8, € Hand &,...,8] € Hy with

by ®) ... B @1 Gy... 6, )

Z% there are &1,...,6, € H with 5 (... &, (&, )

L2 here are &,....6, € § with 61,....6, o &

DZE}&?J"Q@ O




4 Extending the Calculus

In this section, the calculus is extended in order to capture the specific properties
of constants and functions. We start the scrutiny with functions.

The following EGI holds in a model (U, I) exactly if F' is interpreted as an n-ary
(total) function I(F): U1 — U:

n— lF
QjF = I n— llrg> “

More precisely: The left subgraph is satisfied if F is interpreted as partial func-
tion (that is, to objects o1, ..., 0,1 exist at most one o,, with I(F)(01,...,0,)),
the right subgraph is satisfied if for objects o1, ..., 0,_1 exist at least one o,, with
I(F)(o1,...,0,). In other words: The left subgraph guarantees the uniqueness,
the right subgraph the existence of function values.

According to the last subsection, we have to find rules which are sound and
which enable us to derive each graph & with F' € F. They are given below.

Definition 10 (New Rules for Function Names). Let F € F be an n-ary
function name. Then all Tules of the calculus, where F' is treated like a relation
name, may be applied. Moreover, the following additional transformations may
be performed:

— Functional Property Rule (uniqueness of values) Let e, f be n-ary
edges with v(e) = (vi,...,0n-1,0), V(f) = (v1,...,Un—1,0f), ctx(e) =
ctz(ve), cte(f) = ctz(vy), and k(e) = k(f) = F. Let ¢ be a context with
¢ < ctx(e) and ¢ < cta(f). Then arbitrary identity-links id with v(id) =
(ve,vg) may be inserted into ¢ or erased from c.

— Total Function Rule (existence of values) Let vy,...,v,_1 be vertices,
let ¢ be a context with ¢ < ctx(v1),...,cte(v,—1). Then we can add a vertex
vn, and an edge e to ¢ with v(e) = (vi,...,v,) and k(e) = F. Vice versa, if
v, and e are a vertex and an edge in ¢ with v(e) = (v1,...,v,) and k(e) = F

such that v, is not incident with any other edge, e and v, may be erased.

We have to show that these rules are sound are complete. We start with the
soundness of the rules.

Lemma 2 (The Total Function Rule is Sound). If & and &' are two EGIs
over A:= (C,F,R,ar), M := (U,I) is a relational structure with M |E & and
&’ is derived from & with the total function rule, then M = &'.

Proof: Let &’ be obtained from & by adding a vertex v, and an edge e to ¢
according to the total function rule. We want to apply Lemma 1 to c, so let ref
be a valuation for the context c.



Let us first assume that we have M |= &]c, ref], i.e., there is an extension ref
of ref to V Narea(c) with M = &lc,ref]. Let o:= I(F)(ref(vy,...,ref(vy)).
Then ref’ := ref U {(vn,0)} is a extended partial valuation for ¢ in &’ which
satisfies M = &[c,7ef'], as the additional edge condition for e in the context c
of & holds due to the definition of ref’. Particularly, we obtain M &= &'[c, ref].

Now let M |= &'[c, ref], i.e., there is an extension ref’ of ref to V N area(c)
with M |= &'[c,ref’]. For ref := ref '\{(vn,ref’(v,))} we have M | &|c, ref],
thus M = &, ref].

Now Lemma 1 yields the lemma. a

Lemma 3 (The Functional Property Rule is Sound). If & and &' are two
EGIs over A:= (C,F,R,ar), M := (U,I) is a relational structure with M |= &
and &' is derived from & with the functional property rule, then M |= &'.

Proof: Let &’ be obtained from &’ by inserting an identity-link id with v(id) =
(ve,vy) into c. We set ¢, := ctz(e) and ¢y := ctz(f). The EGIs & and &’ are
isomorphic except for the context c. First note that the contexts c. and ¢y must
be comparable. W.l.o.g. we assume c, > ¢y > c.

We first consider the case ¢, = ¢y = c. We want to apply Lemma 1 to ¢, so let
ref. be a partial valuation for c. In &’ in the context ¢, we have added the edge
id, thus for ¢, there is one more edge condition to check. So it suffices to prove

(U,I) E Blc,ref.] = (U, 1) &c,ref.] (6)

Let (U,I) |= &]c, ref.]. That is, there is an extension ref, of ref. to VNarea(c)
with & = &lc,ref.], i.e., ref. satisfies all edge- and cut-conditions in c. Partic-
ularly, it satisfies the edge-conditions for e and f, that is:

(@(vl), . .@(vn_l),@(ve)) € I(k(e)) and
(refe(v),...ref(vn-1),refe(vy)) € I(k(f))
ie,refo(ve) = I(F) (refe(v1),...refe(vn—1)) = refe(vs). So the additional edge

condition for id in &' is satisfied by ref.. We obtain &’ = &[c,ref.], hence
&’ E &lc, ref.], thus Eqn. (6) holds. Now Lemma 1 yields M = 6 <= M = &'.

Next we consider the case ¢, = ¢y > c¢. We want to apply Lemma 1 to c., so let
ref., be a partial valuation for c.. To apply Lemma 1, it it suffices to prove

&= ®[Cevrefce] = ¢ = 05[0&@] (7)

for each extension ref., of ref., to area(c.)NV. So let ref., be such an extension,
If ref., does not satisfy the edge-conditions for e and f, we have & [~ &[c,ref,, ]
and &' £ &lc,ref,.. |, thus Eqn. (7) holds. So let ref,., satisfy the edge-conditions
for e and f. Analogously to the case ¢, = ¢y = ¢ we obtain ref., (ve) = refe, (vy).
Moreover, for each extension ref, of ref., to a partial valuation of ¢, we obtain
& = Ble,ref.] < & E &lc,ref.]. This can be seen analogously to the




case ¢. = ¢y = ¢, as ® and &' differ only by adding the edge edge id in ¢, but
for each extension of ref. to area(c) NV, the edge-condition for id is due to
refe, (ve) = refe, (vy) fulfilled. Now it can easily be shown by induction that for
each context d with ¢, > d > ¢ and each extension refy of ref., to area(d)NV,
we have & |= B[d, refy] < &' |= &[d,refy]. This yields & = S[c., ref..| <
&' & &, refe.], i.e., Eqn. (7) holds again.

Next we consider the case c. > ¢y > c. The basic idea of the proof is analogous
to the last cases, but we have two nested inductions. Again we want to apply
Lemma 1 to ¢, so let ref. be a partial valuation for c.. Again we show that
Eqn. (7) holds for each extension ref, of ref. to area(c.) N V. Similarly to the
last case, we assume that ref, satisfies the edge-condition for e. It is sufficient
to show that

6 = Olcs,refy] = & |=O[cs,refy] (8)
holds for each each extension ref; of ref, to area(cy)NV: Then similarly to the
last case, an inductive argument yields that for each context d with ¢, > d > cy
and each extension refy of ref., to area(d) NV, we have & |= &[d,ref;] <=
&' | &[d,refy). This yields & | Slce,ref.] < &' | &lce,refe]. That is,
Eqn. (7) holds.

It remains to show that Eqn. (8) holds. Let us consider an extension ref; of
refe to area(cy) N'V. To prove Eqn. (8), it is sufficient to show that

& = &lcp,refs] = & | &[cs,reff 9)

holds for each extension ref; of refs to area(cy) N'V. Now we can perform
the same inductive argument as in the last case. If ref; does not satisfy the
edge-condition for f, we are done. Otherwise we have ref;(v.) = refs(vy). For
each extension ref. of refy to area(c) NV, we obtain & = Slc,ref.] <=
&’ & &, ref.]. Now from the usual inductive argument we obtain that for each
context d with ¢; > d > ¢ and each extension refq of refy to area(d) NV, we
have & = &[d,refy] < &' = &[d, refy]. From this we conclude that Eqn. (9),
thus Eqn. (8), holds. This finishes the proof for the case c. > ¢y > c.

Finally, the cases c. > ¢y = ¢ and ¢y > ¢, = ¢ can be handled analogously. O

Next, the new rules for constants are introduced. As constants correspond to
that functions f with zero arguments, a distinction between constants and func-
tion names is, strictly speaking, not necessary. So the rules for constant names
correspond to rules for 1-ary functions (i.e. functions f with dom(f) = 0).

Definition 11 (New Rules for Constant Names). Let C € C be a constant
name. Then all rules of the calculus, where F' is treated like a relation name, may
be applied. Moreover, the following additional transformations may be performed:

— Constant Identity Rule Let e, f be two unary edges with v(e) = (v.),
v(f) = (vg), ctx(ve) = cta(e), ctx(vy) = ctz(f),and k(e) = k(f) = C. Let c
be a context with ¢ < ctx(e) and ¢ < ctz(f). Then arbitrary identity-links id
with v(id) = (ve,vy) may be inserted into ¢ or erased from c.



— Existence of Constants Rule In each context ¢, we may add a fresh vertex
v and an fresh unary edge e with v(e) = (v) and k(e) = C. Vice versa, if v
and e are a vertex and an edge in ¢ with v(e) = (v) and k(e) = F such that
v is not incident with any other edge, e and v may be erased from c.

That is: Devices @— C' may be inserted into or erased from c.

It remains to prove the completeness of the extended calculus.

Theorem 3 (Extended Calculus is Complete). Each set HU{B} of EGIs
over A:= (C,F,R,ar) satisfies H =& = Ht 6.

Proof: Due to the remark before Def. 11 and Thm. 2, it is sufficient to show that
for each F' € F, the graph & can be derived with the new rules. The functional
property rule (fp) enables us to derive the left subgraph of & as follows:

dlf. O il’ll_S.

The right subgraph of &5 can be derived with the total function rule (tf):
dc. ins.
H F

5 An Example for a Proof with Constants and Functions

In this section, an example for a formal proof with EGIs is provided. We prove a
trivial fact in group theory, namely the uniqueness of neutral elements. Assume
that e; and e; are neutral elements, i.e. we have Vz : x-e; = e; = €1 - x and
Vo :x-eg = ey = ey x. From this we can conclude e; = es.

In the following, a formal proof with EGIs for this fact is provided. We assume
that ey, es are employed as constant names and - as function name.

We start with the assump-
tion that e, es are neutral el- < € 3 €
ements, i.e. [ [

Erasure yields:

First, we insert e; and es (i.e.,
edges which are labeled with )
e1 and ey) as follows:




The edges are iterated:

Now we can remove the iden- E—
jcity e.zdges with the constant |¢—e g—ﬁen e—e
identity rule.

The next graph is derived with E— E—
. 1~2 2~ 1
the existence of constants rule. g—ﬁ € e

Next, we remove the double 1302 ]
cuts and rearrange the graph.

We can insert identity edges , 13 ¢,
with the constant identity
rule. K I3 ©1

The functional property rule 2] .
now allows to add another :
identity edge. © I3 €

The erasure rule finally yields: e,—s—e—¢, 0

6 Discussion and Outlook

We have shown how existential graphs have to be modified to cover constants
and functions as well. Though the approach of this paper is somewhat generic,
the set of the new rules depends on the syntactical implementation of constants
and functions. In CGwCs, constant names are assigned to the vertices instead
of the edges. Although the expressivity of the system remains the same, we have
new syntactical possibilities to express a given statement. For this reason, further
rules in the calculus are needed. A discussion on this can be found in [Dau06b].

Existential graphs should not be understood as a diagrammatic version of the
specific form of FO where only relations are used. As this paper shows, they can
tailored to formalize other kinds of logic as well. Another example is Description
Logics. In [DE06], the syntax and semantics of a fragment of existential graphs
is provided which corresponds to the Description Logic ALCZ. A calulus for this
system is provided in a paper which has recently be submitted to the conference
on visual languages and human centric computing. Similar to this paper, this
calculus is based on Peirce’s original calculus, augmented with additional rules.
Together with the general, formal elaboration of existential graphs in [Dau06b],
these results show that the system of exististential graph conforms the needs of
different forms of contemporary formal logic.
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